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Abstract—The paper explains the reason for the experimentally observable deformation of a rectangular
turbulent jet manifesting itself in a rapid growth {along the jet length) of the jet cross-section shortsideand a
reduction of its long side. As a result, these sides change places some distance downstream of the jet origin.
The jet deformation is shown to be due to a specific pressure field induced by large vortices that originate in

the jet mixing zone.

A method of calculating the jet deformation is developed which makes use of the author’s information on
the pressure field produced by large vortices. The predicted results are compared with the experimental data
available from other sources. The theory suggested applies to jet flows in boiler furnaces, dryers, combustion
chambers of jet engines and stationary gas-turbine plants of electric power stations, chemical reactors, etc.

NOMENCLATURE
a, b, cross-section sides (inside of vortex);
Ao, dimensionless circulation of vortex;
P, static pressure;
o vortex cross-section radius;
t time;
u, averaged flow velocity ;
U, mean relative velocity of fluctuating flow
past a vortex;
v, deformation rate of jet cross-section ;
X, longitudinal coordinate;
R, side of an equivalent square, {(ab)'?;
¥, transverse coordinate ;
Yo» distance between axes of subtending seg-

ments of vortex.

Greek symbols

3, jet mixing layer thickness;

T, vortex circulation;

A, difference sign ;

o, density.

Subscripts

0, vortex axis;

a, direction of long side of itial cross-
section ;

b, direction of short side of initial cross-
section ;

ib, free (vortex);

i, induced (velocity}; starting portion;

ia, ib, end of jet starting portion

K, constricted jet cross-section

m, jet axis;

tr, end of transitional portion of jet.

1. INTRODUCTION

THE sTupy of turbulent rectangular jets has been the
concern of many Soviet and foreign investigations for
almost 50 years. The first experimental work, in which

the averaged velocity fields were studied in rectangular
jets with initial cross-section side ratios of 1, 2, § and
10, was carried out in the U.S.S.R. in 1933 [1].

During the ensuing 30 years the interest both of
Soviet and foreign scientists was centered around
studying a plane-parallef turbulent jet. Different semi-
empirical theories of a plane jet have been developed.
They are summarized in ref. [2]. In experiments,
particular attention has been paid to the provision of
such experimental conditions which would preclude,
wherever possible, the ‘spatial effect’ {e.g. by using
special screens) [3, 4].

The mid-1960s again saw the advent of studies
devoted to 3-dim. jets and wakes [5, 6]. A thorough
experimental investigation of rectangular jets was
carried out by Krashennikov and Rogalskaya [7] who
noted a strong effect of initial efflux conditions on the
mtensity of subsequent jet deformation.

In recent years, atiempts have been made to cal-
culate the strained rectangular jet [8] based on the
assumption of the existence of substantial transverse
velocity components over the circumference of a
rectangular jet. However, these studies lack a sufficient
physical justification for the abnormal transverse
velocities and, therefore, the approach applied is
artificial in character.

In the present paper, a hypothesis is advanced that
large vortices, which are formed in the turbulent
mixing zone, are responsible for the occurrence of an
oscillating pressure field. The time-average pressure
depends on the relative distance between parallel
segments of a closed large vortex located at the jet
cross-section. The closer the segments are to the jet
axis and the thicker these vortex segments are, the
lower is the mean pressure at the given point of the
inner vortex field. Therefore, the shorter and more
widely spaced sides of the fluid contour, embraced by a
closed rectangular vortex, experience a higher pressure
than its longer sides. This induces an overflow of fluid
in the jet cross-section plane, which results in a gradual
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deformation of the vortex, its internal field, and of the
whole jet cross-section.

The approximate theory of the effect of large vortices
on turbulent jet structure, developed earlier by the
author [10, 13], allows the determination of the
relative thickness of a vortex, relative distances be-
tween the opposite vortex segments, and, respectively,
the time-average pressure field. Making use of this
information and relating the pressure distribution to a
straining transverse fluid motion, a physically sound
technique is suggested for the approximate calculation
of rectangular jet deformation, which shows a satisfac-
tory agreement with the experimental data published
between 1973 and 1979 7, 9, 10, 11].

g= 1+ [ro/2yo + ro)]2 + [Ary/26][ £ 1 — ro/(Ryo + ro)].
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fluctuating flow past large vortices, moves with the
same averaged velocity u, as the large vortices, ie.
constitutes a travelling pressure wave. It moves at the
velocity u, — u relative to any flow layer having the
velocity w.

The pressure fields produced by large vortices have
been obtained [10, 11]. Thus, over the trajectory
traversed by a large vortex in a plane jet the maximum
instantaneous deviation of pressure from that observed
in an undisturbed surrounding fluid is

oY max = 0.5poU[1 — (1 + ¢)*]
= — 05p,U%29 + ¢*) (1)

where

)

2. PRESSURE FORCES AT THE CROSS-SECTION

Let us consider the reasons for the deformation of a
3-dim. jet. Experiments [ 5-11] show that spreading of
a turbulent rectangular submerged jet is accompanied
by deformation of its cross-section, with the smaller
side of the rectangle increasing in a streamwise direc-
tion and the larger side decreasing. At a certain
distance from the jet origin, its cross-section acquires a
square shape (with rounded corners), but this shape is
only an intermediate one. Farther away from the jet
origin, the directions of the short and long sides of the
jet cross-section change places (Fig. 1). Presumably if
this process had not been influenced by turbulent
mixing, then at some distance from the origin the jet
would have acquired the cross-section of the initial
rectangular form, but located at 90° to the initial cross-
section. After that the direction of deformation would
have been reversed. However the turbulent mixing
leads to the decay of variations of the rectangular jet
cross-section shape.

It follows from refs. [10, 11] that large vortices
originate in the mixing layers and are transported by
an averaged flow at the velocity equal to the local
averaged velocity u,. The fluctuating portion of the
flow moves past these vortices at the relative velocity,
which is porportional to the maximum eddy velocity U
~ {u,> (Fig. 2). The pressure field, resulting from the

b Mixing layer
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FiG. 1. Configuration of a rectangular jet.

1 — 0.25[(ro/yo)* *+ Aord/dyo]

The magnitude of the dimensionless parameter g
depends on the vortex radius ry, mixing layer thickness
8, spacing between the axes of a pair of opposite
vortices located at a jet cross-section y, (Fig. 2), and
the dimensionless vortex circulation A,.

In ref. [10], the following quantities were used
K,o oI
To = B Ao_nréU'

(3)

Here K, = 0.22 is the empirical constant, 4, = 2 over
the initial portion of the jet, 4, = 2.27 over the
transitional and main portions. According to ref. [10],
the maximum relative velocity is equal to one quarter
of the maximum averaged velocity at the jet cross-
section: U = 0.25 u,,,. The average pressure fluctuation
on the line of motion of large vortices is shown there to
be about one fifth of its maximum value

<P/o> = 022<p6>mdx

Substitution of all of the above values into equation
(1) yields the formula for the mean deviation from the
non-perturbed gas pressure on the vortex line

{Poy = — 0.008 poui(2q + ¢°). (4)

Let us assume that in a rectangular jet the ends of
vortices, originating in mutually perpendicular mixing
layers, converge and form a closed cylindrical vortex
rolled up as a rectangle (Fig. 3). In this case, as follows
from equation (4), the more closely spaced opposite
segments of vortices (y,, = b) induce a higher
rarefaction. The difference of pressures on the sides of
the rectangular inner field encompassed by the vortex
induces a straining motion, the streamlines of which
are shown in Fig. 4. This straining motion results in
gradual shortening of the long side, and lengthening of
the short side, of rectangular jet cross-section. At the
location where the cross-section becomes square (a =
b), the pressures at the sides a and b balance out, but
the straining motion persists by inertia until the
increasing pressure difference, which reverses its sign at
b > a, completely decelerates the process of defor-
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FiG. 3. A closed vortex at the rectangular jet cross-section.

mation, following which the next cycle of jet cross-
section deformation starts and so on.

3. RATES OF CROSS-SECTION DEFORMATION

The following method of calculation of the 3-dim. jet
deformation is suggested. We shall determine the
difference of pressures applied to the sides 2a and 2b of
a rectangular inner vortex field based on the assump-
tion that the vortex segments located at these sides act
as infinite vortices, 1.e. we shall extend equation (4) to
the segments of a rectangular vortex. Then the mean
differences of pressures applied to short and long sides
of a rectangular inner vortex field, respectively, is

Ap = {poy> — {Pow?
= 0.008 poup(d, — 4)2 + 4a + gp). (5)
We substitute y,, = b into equation (2) when de-
termining g, and y,, = a when determining g,,.
The straining motion of an incompressible fluid in

the jet cross-section plane can be calculated based on
the following considerations (Fig. 4). The area encom-

F1G. 4. Stream lines in straining motion,

passed by a rectangular vortex does not change on
deformation of the cross-section over a short segment
of the jet equal to the calculation step Ax.

In the initial cross-section of the jet

(6)

According to the continuity condition, the in-
stantaneous values of the deformation rate on the
mutually perpendicular sides of rectangular cross-
section are

R2 = ab = agh, = const.

Vb= —

a

Via ()

where

Vv, = da/dt, V, = db/dr.

The total work of pressure forces (over an infinitely
short interval of time dr) applied to the mass of fluid
filling the rectangular cross-section is equal to a
change in the total kinetic energy of this mass

—dL, = {poyy aVdt + {po,» bVdt

=025ab pod(V2 + V2). (8)
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Here, an assumption has been used that one half of the
considered mass, which lies above the diagonal of the
rectangular cross-section quarter (Fig. 4), has the
velocity V,, while that lying below, the velocity V.
The quantities <{py,> and {py,>, obtained from
equation (4), are mean pressures at the respective sides
of the rectangular cross-section. The use of equations
(5), (6) and (7) reduces equation (8) to the following

form:
1 dv, dv
—Ap == b—> — = 9
i 2”°< dt “dr) @)
where, according to equations (6) and (7),
dav, d’b  dv, _ d%a
de de?’ dr de?

IR EN AT
=4 plar) "pae | 1O

Substituting equation (10) into equation (9) and
accounting for equations (6) and (7), we have

a*\d* 2a* /db\?
—Ap =05 b+ —)— ——|[— 11
i p"[( * b)dtz b2 (dt)]' ()

It follows from equation (11) that in the initial cross-
section of the jet, when V, = db/dt = 0, the
acceleration of straining motion is

<d2b> _ 2Ap
d? Jo  po[bo + (ag/bo)]
At the distance x, from the jet origin, where the field

encompassed by the vortex becomes square (a = b, V,,
=V, Ap, = 0)

&ehy Vi,
), b,

q

aq>

At the end of the first ‘half-wave’ of deformation (x

= xyg), when again V,; = 0
<d2b> _ 2Apx
dr? jx  polbx + ai/by)]’

Over the length where x < x,, Ap < 0, and over the
length with x, < x < xg, Ap > 0. In the general form
equation (11) yields

o db b

taking into account— =V, = -V~

dt a

d*  2(Ap/po — V3 _ 2AApipo — V2)
 b+a¥b b+ RYP

de?

Owing to the fact that calculation of different
portions of a deforming jet (initial, transitional and
main) is characterized by specific features, we shall
consider each portion in detail.

(12)

4. CALCULATION METHOD

Itisknown from the theory of turbulent jets [ 2], that
the starting portion of the jet is equal to about 9 initial
half-widths for a plane-parallel jet (at a; — ) orto9
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initial radii for a round jet. A specific feature of the
rectangular jet is the non-simultaneous penetration of
the mixing layers, formed at its side surfaces, to the jet
axis.

We shall assume that the mixing layer thick-
ness over the starting portion of a rectangular jet
is uniform over the whole perimeter of any cross-
section and increases along the jet [2] by the law

5=027x. (13)

The abscissa x;, (at b < a) of the point, where the
boundary of the mixing layer maximum velocity first
intersects the rectangular jet axis, is determined from

Vip = by, (14)

where b; is found by successive calculation of the jet
divided into steps of equal length Ax.

It is shown in refs. [10, 11] that over the starting
portion of an ordinary jet, large vortices move along
the line which continues the edge of the nozzle, in view
of which the transverse distance between the opposite
vortices remains the same and equal to the nozzle
width. In the case of a rectangular jet, it is logical to
assume that over the jet starting portion at x < x,,, a
large vortex encompasses a rectangular field of con-
stant area (ab = agb, = R3).

It is recommended that deformation of the starting
portion of a rectangular jet be calculated in the
following sequence. Having chosen the calculation
step Ax, determine the time required for a vortex to
traverse this step

At = Ax/u, (15)

where u, = 0.7 u, is the rate of vortex displacement, u,
is the velocity in the jet core equal to the velocity of
discharge. Hence,

At = 1.43 Ax/u,. (16)

Then, equation (12) yields the rate of deformation

db d%b
Vy=—=— |At
dr dr?

The acceleration d2b/dt? is determined from equa-
tions (5) and (2) for the local values of pressure
difference at the adjacent sides of the rectangular field
of avortex, with y,, = a,yo, = b,ro =0228and V, =
V,(a/b) for the nth step being taken from calculations
of the previous (n — 1)th step. At the jet origin, i.e. for
the first step, the deformation rates are equal to zero
(V, = V, = 0). As noted, the area of the inner vortex
fieldat x < x;, is taken to be constant (R, = ayb,). The
increment in the mixing layer thickness at the distance
of one step, in accordance with equation (13), is

Ad = 027 Ax.

(17)

(18)
According to equation (17), the increment in the

small side of a rectangular vortex field is

db
Ab =V, dt = <—>At. (19)
dt
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From this
b,=b,_, + Ab, 20$)
and, after equation (6),
R}
= —. 21
W= (21)

It has been shown [ 107 that the vortex axis is located
at the distance

y, =030, (22)

from the boundary of the mixing layer maximum
velocity. Therefore, the longitudinal coordinate x,, of
the cross-section, at which the mixing layer intersects
the jet axis, is sought in the process of calculation from
the condition

Yie = by = 0.3 6, (23)

Calculation of the transitional portion of the jet
requires additional explanations. In the mixing layers
carrying long segments of the rectangular vortex,
between the point x = x;, and the point, where the
adjacent mixing zone intersects the jet axis (x = x;,),
the flow pattern sets in, which is representative of the
transitional section, while in the remainder two layers
(that have failed to reach the jet axis) the starting-
portion mode of flow is maintained. In connection
with this, in the zone x > x;, the equality of thicknesses
of the adjacent mixing layers is violated (6, # d,). The
increment in the layer thickness d, can, as before, be
determined from equation (18)

A8, = 027 Ax,

while the thickness of the adjacent layer 9, should be
sought in this zone following the laws of transitional
portion of the jet, i.e. according to ref. [2], as

Ad, = 0.18Ax. (24)

The parameters g, and g, are calculated using
different values of y, determined respectively for the
mixing layer adjacent to the jet axis from condition
(22)

Yo» = 0.3 8,, (25)

and for the mixing layer bordering on the constant
velocity zone from

(26)

Moreover, over the portion x > x;,, according to
equation (25), it is necessary to account for a one-sided
increase in the vortex field, with an increment in R in
equations (6) and (12) over the length Ax being
determined according to equations (24)-(26) as

A(R?) = agAb = 0.3A8,a, = 0.054a,Ax.

Yoa = 4.

@7

The calculation is allowed to progress till the second
mixing layer comes close to the jet axis (x = x;,). If at
X.p < X, the transitional portion terminates in the
layer 6,, then in the zone x,,, < x < x,, it will behave

1889

justasin the main portion of the jet ; then equation (24)
is to be replaced by [2]

Ad, = 0.22Ax, (28)
and then, in place of equation (27), we obtain
A(R?) = 0.066g,Ax. (29)

Corresponding to different thicknesses of mixing
layers (6, # 6,) there are different radii of large vortex
segments (ry, # o) and, consequently, different values
of circulation (I', # TI',) that are determined by
equation (3) as

T, =mnr3, UAy/S, T, =mnard,UAy/5, (30)

At the corners of the jet cross-section where the ends
of adjacent segments of the vortex join together, a jump
in circulation takes place

ATy, =T, — T, = T(8,/8, — 1). (31)

It is evident that this results in the development of
the following vortex system. A closed vortex of smaller
circulation I, is located in the cross-section, while the
ends of the vortex of larger circulation I', are split into
two parts: one part enters the closed vortex, while the
other, corresponding to the excess of circulation AT,
forms a free end of the vortex entering the zone of
reduced velocity where the relative motion of fluid
carries it away along the path of the jet. The end of the
free vortex should rest in this case on the exit edge of
the jet nozzle, which provides the fulfiliment of the
condition of vortex conservation. The vortex system
described, which is shown in Fig. 5, is similar to that
formed on the finite span wing.

Free vortices induce additional velocities V ;and V,,;
that influence the process of jet deformation.

Thus, besides the velocities V,and V, determined on
the basis of pressure differences, calculation of jet
deformation over the transitional portion should
include the induced velocities, i.e. it should be assumed
that

Vis=V, 2 Vo Vig=Vy V. (32)

The sign depends on the direction of induced velocity.
In order to determine the mean value of the induced
velocity (on the given side of the cross-section), for-
mulae from the finite-span wing theory can be used

V= Arjb/(na) (33)

and similarly

Vi = AL /(7). (34)
Here, the circulation of a free vortex is determined
from equations (30) and (31) as

Arjb = (m(z)b UAo/d) [(541/51;) - 1]- (35)

According to the theory of large vortices which gives
U = 0.25uy, ry, = 0.22 3,, and by virtue of equations
(33) and (34), we have

Ao(éa - 6b)

Vi = 0012u, ——" = — V,(a/b). (36)
a
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The relationship between the total velocities of
straining motion (32) and dimensions of the closed
vortex field is expressed, according to equations (34)
and (7), by

Vb= — Vpsa 37)

If the difference between the sides of the jet cross-
section is large (a > b), the transitional segment on the
shorter side terminates earlier than the initial segment
on the longer side (x,,, < x;,), but when x,,, < x one
should account for a change in the velocity on the jet
axis (¥, < u,)in the beginning by the laws of the plane-
parallel jet and in the subsequent portion of the jet (x
> x.), by the laws of the 3-dim. jet.

As is known for a plane jet [2]

(38)

um/ul = (xlrb/x)l‘lz-

For a rectangular jet at x > x,, one can employ the
law [7]

- =, (39)

where the abscissa x_, shows the place where the
hyperbola (39) intersects the line u,, = u,. The
experiments described in ref. [7] show that for a
tentative calculation of a rectangular turbulent jet one
may assume that

Xp = 125 Ry, (40)

where R, is determined from equation (6).

The change-over from equation (38) to equation (39)
is carried out on some intermediate abscissa x, x X,
where the both functions intersect and therefore

or (41)
Xm = (xlra Xtrb)“2

The magnitudes of characteristic abscissas from
equations (40) and (41) are used to determine the axial
velocity of a rectangular jet.

The adequacy of equation (40) for the description of
velocity distribution over the axis of a 3-dim. jet can be
assessed from the spread of points in Fig. 6, where the
results of all known experiments for rectangular jets

/’F:n
1

Fi1G. 5. A system of large vortices in a rectangular jet.
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issuing both from smooth nozzles and sharp-edged
orifices in a plane wall are presented.

The comparison between the predicted results and
experimental data for each of the cases shown in Fig. 6
is given below.

When determining the difference of pressures by
equation (4), we use the value of u, obtained from
equation (38) for the region x,,, > x > x,,, and the
value of u,, derived from equation (39) for the region x
> Xy

The area of the vortex field R?, assumed, in accor-
dance with equation (6), to be constant over the
starting jet portion (at x < Xx;,) and increasing,
according to equation (27), in the region x > x;,, also
grows in the main portion of the jet ; here, both sides of
the field increase with the jet thickness. According to
equation (22), over the main portion of the jet (at x >

xia)

R? = ab = 0.09 8,5, (42)

At the same time, the vortex radius constitutes a
constant fraction of the jet thickness

Foa = 0228,; rop =022, (43)

Hence, when the expressions (42) and (43) are
substituted into equation (2), the same magnitude of
the parameter g is obtained for the adjacent mixing
layers (g, = g,), but then, according to equation (5),
the difference of pressures on the adjacent sides of the
vortex field disappears (Ap = 0). In such a case, at x >
X;s the jet deformation depends only on the com-
bination of the inertial rate of deformation V, and the
induced velocity V

VaZ = Vu - Vai‘ (44)

Then
d?b =2V2

a2 T b+ (RYbY) (45)

where V,, is determined from equation (33).

It should be noted that in the region of the falling
branch of the curve u,,(x), the time interval correspond-
ing to the computational step Ax, is determined taking
into account the local value of u,, i.e. according to
equation (15) as

A
A= 14X

Uy Um

(46)

The above computational formulae are obtained for
the case of a jet issuing from a nozzle with a uniform
velocity field. The initial nonuniformity of the flow can
be accounted for by substituting the real jet cross-
section (F, = RZ = ayb,) for an equivalent one (F, =
R? = a,b,), in which the velocity is constant and equal
to the maximum velocity on the axis at the origin of the
real jet (1), while the total momentum is assumed to
be the same. For lack of sufficient information on the
initial velocity profiles in the reported experimental
works, these corrections have not been introduced
here.
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In their experiments, Krashennikov et al. [7] and
Krothapali et al. [15] studied the deformation of a jet
issuing not only from a rectangular nozzle but also
from a rectangular hole in a thin wall. It has been
established that the jet discharge conditions influence
appreciably the subsequent jet deformation. The initial
compression of the jet coming out of a hole in a thin
wall persists over a relatively small distance from the
wall.

Let the sides of the constricted cross-section of a jet
be ay and by. The well-known solution for the problem
of ideal fluid discharge from a thin wall, given in ref.
[16] for a plane slot, as well as round and elliptical
holes, shows that complete constriction of the jet in
these cases is actually the same and equal to

i = RE/R2 ~ 061. 47)

A change in the jet cross-section R? = ab over the
length x is of an asymptotic nature, but the con-
striction of the cross-section area to the value R =
0.61 R} for a circle and a slot occurs at about the same
distance from the wall

xg = 1.6 by, (48)

where b, is the slot half-width (or the hole radius).

A rectangular hole occupies an intermediate pos-
ition between an infinite slot and a square, while the
behaviour of the compressed jet in the process of
transition from one of these two cases to the other is
similar to that which should be observed in the
transition from an ellipse with an infinitely elongated
major axis to a circle.

On the basis of what has been said above and in
accordance with equation (47), the following re-
lationship is adopted for the area of the constricted
rectangular jet cross-section

RZ/R2 = 0.61. (49)

Then, for lack of a theoretical solution for the
problem of rectangular jet constriction, it is assumed
that over the constricted segment the side ratio
remains constant, i.e.

ag/a, = by/b,. (50)

Equations (49) and (50) yield the sides of the

constricted cross-section
ag = 0.79a4; by = 0.79 b,

and, by analogy with equation (48), the distance from
the wall to the constricted cross-section is

xg = 1.6 by

(51

(52)

Here, 2b,, is the small side of a rectangular hole.
Thus, accounting for the constriction of a jet as it

issues from a slot in a thin wall is reduced to the

replacement of the slot dimensions a,, b, by ag, by.

5. COMPARISON BETWEEN PREDICTION AND
EXPERIMENT

When comparing the predicted results with the
experimental data the following arguments have been
applied.

It was shown experimentally by Krashennikov et al.
that the dimensionless velocity profiles in the jet cross-
sections along both symmetry axes are expressed
by the same universal relationship, which is con-
ventional for turbulent jets

o))
Up, Yo 5u 20 .5u

where y and z are the coordinates of the instantaneous
points on the symmetry axes of the cross-section; y, 5,
and z, ¢, are the same for the points at which the
velocity is half that on the longitudinal jet axis (u =
0.5 uy,). The use of the Shlichting velocity profile [2]

ufu, = [1 — (y/8)**]*

shows that the values of y, 5, and z, s, constitute the
known fraction of the jet thickness

Yo su/0a = 2o 54/05 = 0.415.

At the same time, it hias been established in the
theory of large vortices that the vortex axis is located at
a constant relative distance from the maximum ve-
locity line

a/é, = b/d, = 0.3.

Therefore, the conversion of the vortex field dimen-
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sions b. a into characteristic jet dimensions y, 5., Zg s
determined experimentally, is carried out for the
transitional and main portions of the jet as

Zo.5s/@ = Vosu/b = 1.38; alb =z, 5,/vg 5,
Figure 7 shows the comparison between the ex-
perimental data of Krashennikov et al. (points) and
theoretical results (solid lines) for a jet issuing from a
rectangular hole (2a, = 62.5mm, 2b, = 5mm) in a
plane wall (orifice). The initial degree of turbulence is
about 2%, the jet discharge velocity varies in the range
40-90ms~ !, which corresponds to a Reynolds num-
ber range of 1.5 x 10*-6 x 10* Figure 7 shows the
current value of the jet cross-section side ratio a/b
plotted as abscissa and the corresponding dimension-
less distance (x/2b,) from the jet origin plotted as
ordinate. The behaviour of the predicted curve a/b =
f(x/2b,) agrees qualitatively with the position of

i : 1 hiftad comewhat to the
experimental points, but is shifted somewhat to the

right. This discrepancy can be explained by: (a) the
presence of the boundary layer over the initial section
of the jet with the resunlting large finite vortices there,
while it is assumed in calculations that the initial
thickness of the mixing layer and the initial radius of
the vortex are equal to zero; (b) the effiux from the
orifice accompanied by initial constriction of the jet,
which, in the case of a rectangular hole, can be an
asymmetric one; the side ratio of this cross-section
(ax/bg) may differ from that adopted for calculations.

Figure 8 compares the predicted and experimental
coordinates y/2b, and z/2a, of the lines on which the
velocity amounts to 0.05u,, for the same jet (a, =
124 by).

Figure 9 shows the predicted and experimental
results for the jet issuing from a smooth rectangular
nozzle [14] with the dimensions of the outlet cross-
section 2a, = 50 mm, 2b, = 3 mm (a,/b, = 16.7) and
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F1G.9. Comparison between experiment and theory for a/b and u, at a, = 16.7 b, (nozzle). Experiment: 1,
u,; 2, a/b. Theory: 3, u,,; 4, a/b.
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Fi:. 10. Boundaries of a rectangular jet (nozzle with q, =
16.7by): Vo 54/2b0s Zg 54/ 2. Experiment: 1, 2. Theory: 3.

having the outlet section of constant area and the
length of 40 mm. The nozzle had a large constriction
and the level of turbulence at the jet origin amounted
to 0.3% (at efflux velocities 60 m s~ ! and the Reynolds
numbers Re = 1.2 x 10* based on the quantity 2b,).
In Fig. 10, the predicted and experimental lines of the
half-velocity (vo s./2bg; 2o s4/2a,) are given for the
same jet (a, = 16.7 b).

Figure 11 compares the experimental data of ref.
[15] with the calculation carried out by the above
technique for a rectangular jet, a, = 10b,, in two
versions: (a) the efflux from an orifice; (b) the efflux
from a channel of the same cross-section (2a, =
40 mm; 2b, = 4 mm)and of length x; = 200 mm (the
Reynolds number based on the linear dimension 2b,
= 4 mm is Re = 12 200 for the turbulence level of 5%,
for the orifice and 3%, for the channel).

Figure 12 presents the experimental curves a/b =
f(x/2b,) compared with the predicted ones for the
efflux from an orifice with a; = 5.25b,,.

Figures 7, 9, 11 and 12 show the behaviour of
velocity u,/u, along the jet axis as accepted in
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F1G. 12. Comparison between experiment and theory for a/b
and u,, at a,/b, = 5.25 (orifice). Experiment: 1, a/b; 2, u,,.
Theory: 3, a/b; 4, experiment.

6. CONCLUDING REMARKS

Thus, a hypothesis is advanced that in a mixing layer
of a rectangular jet there exist discrete large vortices
that move with an averaged flow velocity. The fluctuat-
ing superimposed flow moving past them creates a
non-uniform pressure field which causes deformation
of the jet cross-section. The calculation method de-
veloped agrees satisfactorily with the experiments.
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SUR LA DEFORMATION DE LA SECTION DROITE D’UN JET TURBULENT
RECTANGULAIRE

Résumé—On explique la raison de la déformation d'un jet turbulent rectangulaire qui apparait expérimenta-
lement avec une croissance rapide (dans la direction du jet) du plus petit c6t€ du jet et une reduction du plus
grand c6té. Ces changements sur les cotés prennent place 4 plusieurs distances en aval de I'origine du jet. La
déformation est due 4 un champ de pression spécifique induit par de larges tourbillons qui apparaissent dans

la zone de mélange du jet.

Une méthode de calcul de 1a déformation du jet est développée a partir de l'information de I'auteur sur le
champ de pression produit par les grands tourbillons. Les résultats sont comparés avec données
expérimentales en provenance d'autres sources. La théorie suggérée s'applique aux écoulements de jets dans
les foyers de chaudiére, les séchoirs, les chambres de combusion des réacteurs, les turbines 4 gaz terrestres des

centrales électriques et les réacteurs chimiques, etc.

DEFORMATION EINES TURBULENTEN STRAHLES MIT RECHTECKQUERSCHNITT

Zusammenfassung—Dieser Aufsatz erklirt den Grund fiir die experimentell zu beobachtende Deformation
eines turbulenten Strahls von rechteckigem Querschnitt, die sich in einem schnellen Anwachsen (in
Strahlrichtung) der kiirzeren Rechteckseite und einer Verkleinerung der grofleren Seite duflert. Schliefllich
vertauschen die beiden Seiten in einer gewissen Entfernung vom Strahlanfang ihre Plétze. Es zeigt sich, daB
die Strahl-Deformation durch ein spezifisches Druckfeld hervorgerufen wird, das durch groBe Wirbel
induziert ist, die aus der Mischzone des Strahls stammen. Zur Berechnung der Strahl-Deformation wird ein
Verfahren entwickelt, das von Informationen des Autors iber wirbelinduzierte Druckfelder Gebrauch
macht. Die Ergebnisse werden mit Versuchsdaten aus anderen Quellen verglichen. Die vorgeschlagene
Theorie 1aBt sich auf Strahlstromungen anwenden, wie sie in Kesseln, Trocknem, Brennkammern von Strahl-
Triebwerken und von stationaren Gasturbinen, chemischen Reaktoren usw. vorkommen.

O JIE®GOPMALIMM TIOMEPEYHOT O CEYEHUSA NMPAMOYIOJIbHON
TYPBYJIEHTHON CTPYH

Aunnoramns—B pa6ote 06bAcHseTCS NpuunHA Habmo faroLeiics B onbiTax AeopMaLdH IPIMOYToIbHON
TypOyNEeHTHOI CTpyH, BbIpaXcatollelcs B ObICTPOM pocTe (N0 UIHHE CTpYyM) KOPOTKOH CTOPOHbI
NONEPEYHOTO CeHeHMs W YMEHLUWEHHH JUIMHHONM ero cropousl. B peiynsTate Takoil nepecTpodku Ha
HEKOTOPOM PACCTOSHHM OT Hauata CTPYH KOpOTKAas ¥ JIHHHAS CTOPOHBI NONMEPEUHOTO CEYEHHS CTPYH
MeHstoTcs MecTamH. [lokasblaercs, uTo nNehOpMalls CTPYH BbI3biBACTCA CrENUPUYECKMM MOJEM
JaBJIEHHA, KOTOPOE HHAYUMPYETCS KPYMHbIMM BUXPSAMH, BO3ZHHKAIOLUMMH B 30HE CMELICHUS CTPYH.
Paspaboran metox pacyera lebOpMaliMM CTPYH, HCHOJb3YIOILIMA CBEIEHHS O TOJie AaBliEHHS,
CO3IaBAEMOM KDYNHBIMH BUXPAMH, 3aHMCTByeMbIe 13 paboT aBropa. PesynbTaThl pacuera comnocra-
BISIOTCA C JKCINEPHMEHTANIbHBIME AaHHBLIMH ApPYrux apTopos. Ilpennaraemas TeopHs NPUIOKHMA K
pacyeTy CTPYMHBIX TCYCHHIl B TONKAX KOTENIbHBIX YCTPOHCTB, CYILMIIKAX, KAMEPaX CrOPaHUs PEAKTHBHbIX
JBHTaTeJIeH H CTAMOHA PHBIX Ta30TYPOUHHBIX YCTAHOBOK JIEKTPOCTAHLIMA, XHMHYECKHX PEAKTOPaXx U Ap.



