
ON THE DEFORMATION OF THE RECTANGULAR 
TURBULENT JET CROSS-SECTION 

G. N. A~~A~~~~~~ 

Moscow Aviation Institute, Moscow, U.S.S.R. 

(Received 22 September 1981) 

Abstract--The paper explains the reason for the experimentally observable deformation of a rectangular 
turbulent jet manifesting itselfin a rapid growth (along the jet length) of the jet cross-section short side and a 
reduction of its long side. As a resuh, these sides change places some distance downstream of the jet origin. 
The jet deformation is shown to be due to a specific pressure field induced by large vortices that originate in 
the jet mixing zone. 

A method of calculating the jet deformation is developed which makes use of the author”s information on 
the pressure field produced by large vortices. The predicted results are compared with the experimental data 
available from other sources. The theory suggested applies to jet flows in boiler furnaces, dryers, combustion 
chambers of jet engines and stationary gas-turbine plants of electric power stations, chemical reactors, etc. 

NOMENCLATURE 

cross-section sides (inside of vortex) ; 
dimensionless circulatian of vortex ; 
static pressure ; 
vortex cross-section radius ; 
time ; 
averaged flow velocity; 
mean relative velocity of fluctuating flow 
past a vortex; 
deformation rate of jet cross-section ; 
ion~itudinal coordinate; 
side of an equivalent square, (a&)rP ; 
transverse coordinate ; 
distance between axes of subtending seg- 
ments of vortex. 

Creek symbols 
6. jet mixing layer thickness; 
r‘, vortex circulation ; 
4 difference sign ; 
P> density. 

Subscripts 
0, vortex axis ; 

a, direction of tong side of initial cross- 
section ; 

b, direction of short side of initial cross- 
section; 

jb, free (vortex) ; 
i inducted (vebcity); starting portion ;. 
ia, ib7 end of jet starting portion ; 
K, constricted jet cross-section ; 
m, jet axis ; 
tr, end of transitional portion of jet. 

THE STUDY of turbulent rectangular jets has been the 
concern of many Soviet and foreign investigations for 
almost 50 years. The first experimental work, in which 

the averaged velocity fields were studied in rectangular 
jets with initial cross-section side ratios of 1,2, 5 and 
10, was carried out in the U.S.S.R. in 1933 Cl]. 

During the ensuing 30 years the interest both of 
Soviet and foreign scientists was eentered around 
studying a plane-parallel turbulent jet. Different semi- 
empirical theories of a plane jet have been developed. 
They are summarized in ref. [2]. In experiments, 
particular attention has been paid to the provision of 
such experimental conditions which would preclude, 
wherever possible, the ‘spatial effect’ (e.g. by using 
special screens) f3, 41. 

The mid-1960s again saw the advent of studies 
devoted to 3-dim. jets and wakes [5, 61. A thorough 
experimental investigation of rectangular jets was 
carried out by Krashennikov and Rogalskaya [7] who 
noted a strong effect of initial efflux conditions on the 
intensity of subsequent jet deformation. 

In recent years, attempts have been made to caI- 
culate the strained rectangular jet [S] based on the 
assumption of the existence of substantial transverse 
velocity components over the circumference of a 
rectangular jet. However, these studies lack a sufficient 
physicaf justification for the abnormal transverse 
velocities and, therefore, the approach applied is 
artificial in character. 

In the present paper, a hypothesis is advanced that 
large vortices, which are formed in the turbulent 
mixing zone, are responsible for the occurrence of an 
oscillating pressure field. The time-average pressure 
depends on the relative distance between paratlet 
segments of a closed large vortex located at the jet 
cross-section. The closer the segments are to the jet 
axis and the thicker these vortex segments are, the 
lower is the mean pressure at the given point of the 
inner vortex field. Therefore, the shorter and more 
wideiy spaced sides of the Buid contour, embraced by a 
closed rectangular vortex, experience a higher pressure 
than its longer sides. This induces an overflow of fluid 
in thejet cross-section plane, which results in a gradual 
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deformation of the vortex, its internal field, and of the 
whole jet cross-section. 

The approximate theory of theeffect of largevortices 

on turbulent jet structure, developed earlier by the 
author [IO, 131, allows the determination of the 
relative thickness of a vortex, relative distances be- 

tween the opposite vortex segments, and, respectively, 
the time-average pressure field. Making use of this 
information and relating the pressure distribution to a 

straining transverse fluid motion, a physically sound 
technique is suggested for the approximate calculation 
of rectangular jet deformation, which shows a satisfac- 

tory agreement with the experimental data published 
between 1973 and 1979 [7, 9, 10, 111. 

fluctuating flow past large vortices, moves with the 
same averaged velocity u0 as the large vortices, i.e. 
constitutes a travelling pressure wave. It moves at the 
velocity u. - u relative to any flow layer having the 

velocity u. 
The pressure fields produced by large vortices have 

been obtained [lo, II]. Thus, over the trajectory 

traversed by a large vortex in a plane jet the maximum 
instantaneous deviation ofpressure from that observed 
in an undisturbed surrounding fluid is 

(pb),,, = 0.5y,UZ[1 - (1 + 4121 

= - 0.5p,U2(2q + q2) (1) 

where 

1 + [r,lVy, + roll2 k [Ar&W~ 1 - rol(2yo + rdl 
q= 

1 - 0.25[(r,/~0)2 * A,r$Gp,] 

2. PRESSURE FORCES AT THE CROSS-SECTION 

Let us consider the reasons for the deformation of a 
3-dim. jet. Experiments [S-l l] show that spreading of 

a turbulent rectangular submerged jet is accompanied 
by deformation of its cross-section, with the smaller 
side of the rectangle increasing in a streamwise direc- 
tion and the larger side decreasing. At a certain 

distance from the jet origin, its cross-section acquires a 
square shape (with rounded corners), but this shape is 
only an intermediate one. Farther away from the jet 
origin, the directions of the short and long sides of the 

jet cross-section change places (Fig. 1). Presumably if 
this process had not been influenced by turbulent 
mixing, then at some distance from the origin the jet 
would have acquired the cross-section of the initial 

rectangular form, but located at 90” to the initial cross- 
section. After that the direction of deformation would 
have been reversed. However the turbulent mixing 

leads to the decay of variations of the rectangular jet 

cross-section shape. 
It follows from refs. [lo, 1 l] that large vortices 

originate in the mixing layers and are transported by 
an averaged flow at the velocity equal to the local 
averaged velocity u,,. The fluctuating portion of the 
flow moves past these vortices at the relative velocity, 

which is porportional to the maximum eddy velocity U 
h (ub) (Fig. 2). The pressure field, resulting from the 

FK;. 1. Configuration of a rectangular jet 

The magnitude of the dimensionless parameter q 
depends on the vortex radius r,,, mixing layer thickness 
6, spacing between the axes of a pair of opposite 
vortices located at a jet cross-section JJ~ (Fig. 2) and 
the dimensionless vortex circulation A,. 

In ref. [lo], the following quantities were used 

r,, = K,6, A, = -. 
xr;U 

(3) 

Here K, = 0.22 is the empirical constant, A, = 2 over 

the initial portion of the jet, A, = 2.27 over the 
transitional and main portions. According to ref. [lo], 

the maximum relative velocity is equal to one quarter 
of the maximum averaged velocity at the jet cross- 
section : U = 0.25 u,. The average pressure fluctuation 

on the line of motion of large vortices is shown there to 
be about one fifth of its maximum value 

<Pb) = 0.22(Pb)“,,,. 

Substitution of all of the above values into equation 
(1) yields the formula for the mean deviation from the 
non-perturbed gas pressure on the vortex line 

(pb) = - 0.008 j’#;(2q + q2). (4) 

Let us assume that in a rectangular jet the ends of 
vortices, originating in mutually perpendicular mixing 
layers, converge and form a closed cylindrical vortex 
rolled up as a rectangle (Fig. 3). In this case, as follows 
from equation (4) the more closely spaced opposite 
segments of vortices (.vOh = b) induce a higher 
rarefaction. The difference of pressures on the sides of 
the rectangular inner field encompassed by the vortex 
induces a straining motion, the streamlines of which 
are shown in Fig. 4. This straining motion results in 

gradual shortening of the long side, and lengthening of 
the short side, of rectangular jet cross-section. At the 
location where the cross-section becomes square (a = 
b), the pressures at the sides a and b balance out, but 
the straining motion persists by inertia until the 
increasing pressure difference, which reverses its sign at 
b > a, completely decelerates the process of defor- 
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FIG. 2. Schematic of a jet, 
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FIG. 3. A closed vortex at the rectangular jet cross-section. 

mation, following which the next cycle of jet cross- 

section deformation starts and so on. 

3. RATES OF CROSS-SECTION DEFORMATION 

The following method ofcalculation of the 3-dim. jet 

deformation is suggested. We shall determine the 
difference of pressures applied to the sides 2a and 2b of 
a rectangular inner vortex field based on the assump- 
tion that the vortex segments located at these sides act 

as infinite vortices, i.e. we shall extend equation (4) to 
the segments of a rectangular vortex. Then the mean 
differences of pressures applied to short and long sides 
of a rectangular inner vortex field, respectively, is 

AP = (P&J - (pb,) 

= 0.008 W,%L - q,)(2 + Y, + qb). (5) 

We substitute Y,,~ = b into equation (2) when de- 
termining qb and y,, = a when determining q. 

The straining motion of an incompressible fluid in 

the jet cross-section plane can be calculated based on 
the following considerations (Fig. 4). The area encom- 
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FIG. 4. Stream lines in straining motion 

passed by a rectangular vortex does not change on 
deformation of the cross-section over a short segment 
of the jet equal to the calculation step Ax. 

In the initial cross-section of the jet 

Ri = ab = a,b, = const. (6) 

According to the continuity condition, the in- 
stantaneous values of the deformation rate on the 

mutually perpendicular sides of rectangular cross- 
section are 

where 

V,b = - V,a (7) 

V, = daldt, V, = dbldt. 

The total work of pressure forces (over an infinitely 
short interval of time dt) applied to the mass of fluid 

filling the rectangular cross-section is equal to a 
change in the total kinetic energy of this mass 

- dL, = (pbb) aV,dt + (p&J bVdt 

= 0.25 ab pod(V,2 + V,‘). (8) 
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Here, an assumption has been used that one half of the 
considered mass, which lies above the diagonal of the 
rectangular cross-section quarter (Fig. 4) has the 
velocity V,, while that lying below, the velocity Va. 

The quantities (p&) and (p&J, obtained from 
equation (4) are mean pressures at the respective sides 
of the rectangular cross-section. The use of equations 
(5) (6) and (7) reduces equation (8) to the following 
form : 

where, according to equations (6) and (7), 

dV, d’b dV, d2a _=_ 
dt dt= ’ dt dt= 

Substituting equation (10) into equation (9) and 

accounting for equations (6) and (7) we have 

- Ap = 0.5~~ [k+‘b’J$-‘,“r@]. (11) 

It follows from equation (11) that in the initial cross- 
section of the jet, when V, = db/dt = 0, the 
acceleration of straining motion is 

HAP 

p. PO + (4!/b0)1 
At the distance xq from the jet origin, where the field 

encompassed by thevortex becomes square (a = b. Vbq 

= V,,, Apq = 0) 

d=b _ “iq 

i-i--- dt= 4 b, 

At the end of the first ‘half-wave’ of deformation (x 
= .~k), when again V,, = 0 

Over the length where x < xq, Ap < 0, and over the 
length with xq < x < xk, Ap > 0. In the general form 
equation (11) yields 

( taking into account f = V, = - V, b 
a 

d=b -= WP/P, - Vi, = ~@P/P, - V,“, 

dt2 b + a2/b b f R4/b3 
(12) 

Owing to the fact that calculation of different 
portions of a deforming jet (initial, transitional and 
main) is characterized by specific features, we shall 
consider each portion in detail. 

4. CALCULATION METHOD 

It is known from the theory of turbulent jets [2], that 
the starting portion of the jet is equal to about 9 initial 
half-widths for a plane-parallel jet (at a(, + 1) or to 9 

initial radii for a round jet. A specific feature of the 
rectangular jet is the non-simultaneous penetration of 
the mixing layers, formed at its side surfaces, to the jet 
axis. 

We shall assume that the mixing layer thick- 
ness over the starting portion of a rectangular jet 
is uniform over the whole perimeter of any cross- 

section and increases along the jet [2] by the law 

(r = 0.27 X. (13) 

The abscissa xib (at b < a) of the point, where the 
boundary of the mixing layer maximum velocity first 

intersects the rectangular jet axis, is determined from 

l‘ih = hi, (14) 

where bi is found by successive calculation of the jet 
divided into steps of equal length Ax. 

It is shown in refs. [lo, 111 that over the starting 
portion of an ordinary jet, large vortices move along 
the line which continues the edge of the nozzle, in view 
of which the transverse distance between the opposite 
vortices remains the same and equal to the nozzle 
width. In the case of a rectangular jet, it is logical to 

assume that over the jet starting portion at x < xi,,, a 
large vortex encompasses a rectangular field of con- 
stant area (ab = a,b, = Rg). 

It is recommended that deformation of the starting 
portion of a rectangular jet be calculated in the 
following sequence. Having chosen the calculation 

step Ax, determine the time required for a vortex to 
traverse this step 

At = Ax/u, (15) 

where u. = 0.7 u1 is the rate ofvortex displacement, ui 

is the velocity in the jet core equal to the velocity of 
discharge. Hence, 

At = 1.43 Ax/u,. (16) 

Then, equation (12) yields the rate of deformation 

(17) 

The acceleration d2b/dt2 is determined from equa- 
tions (5) and (2) for the local values of pressure 
difference at the adjacent sides of the rectangular field 
of a vortex, with y o~=a,yo,=b,ro=0.226andV,= 
V,(a/b) for the nth step being taken from calculations 
of the previous (n - 1)th step. At the jet origin, i.e. for 
the first step, the deformation rates are equal to zero 
(V, = V, = 0). As noted, the area of the inner vortex 
field at x < xib is taken to be constant (R, = a,b,). The 
increment in the mixing layer thickness at the distance 
of one step, in accordance with equation (13) is 

AcS = 0.27 Ax. (18) 

According to equation (17) the increment in the 
small side of a rectangular vortex field is 

Ah = V,dt = f At. 
c i 

(19) 
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From this 

b, = b,_, + Ab, 

and, after equation (6) 

(20) 

Ri 
a,=-. 

bn 
(21) 

It has been shown [lo] that thevortex axis is located 
at the distance 

4’” = 0.3 b, (22) 

from the boundary of the mixing layer maximum 
velocity. Therefore, the longitudinal coordinate xib of 
the cross-section, at which the mixing layer intersects 
the jet axis, is sought in the process of calculation from 
the condition 

Yib = b,, = 0.3 S,,. (23) 

Calculation of the transitional portion of the jet 

requires additional explanations. In the mixing layers 
carrying long segments of the rectangular vortex, 
between the point x = xib and the point, where the 

adjacent mixing zone intersects the jet axis (x = xi,), 
the flow pattern sets in, which is representative of the 

transitional section, while in the remainder two layers 
(that have failed to reach the jet axis) the starting- 
portion mode of flow is maintained. In connection 
with this, in the zone x > xib the equality of thicknesses 
of the adjacent mixing layers is violated (6, # 6,). The 
increment in the layer thickness 6, can, as before, be 
determined from equation (18) 

A6, = 0.27 Ax, 

while the thickness of the adjacent layer S, should be 
sought in this zone following the laws of transitional 
portion of the jet, i.e. according to ref. [2], as 

A&, = 0.18Ax. (24) 

The parameters q, and qb are calculated using 
different values of Y0 determined respectively for the 
mixing layer adjacent to the jet axis from condition 

(22) 

Y,, = 0.3 6,, (25) 

and for the mixing layer bordering on the constant 
velocity zone from 

Yo, = a. (26) 

Moreover, over the portion x > xib, according to 
equation (25) it is necessary to account for a one-sided 
increase in the vortex field, with an increment in R in 
equations (6) and (12) over the length Ax being 
determined according to equations (24)-(26) as 

A(R’) = a,Ab = 0.3A6,ao = O.O54a,Ax. (27) 

The calculation is allowed to progress till the second 
mixing layer comes close to the jet axis (x = xi,). If at 
xtrh < xi0 the transitional portion terminates in the 
layer 6,, then in the zone x,,* < x < xi0 it will behave 

just as in the main portion of the jet ; then equation (24) 

is to be replaced by [2] 

86, = 0.22Ax, (28) 

and then, in place of equation (27) we obtain 

A(R') = O.O66a,Ax. (29) 

Corresponding to different thicknesses of mixing 

layers (6, # 6,) there are different radii of large vortex 
segments (r,, # rob) and, consequently, different values 
of circulation (I, # I,) that are determined by 

equation (3) as 

I, = rrr& UA,/ii,, rh = nr&,UA,/G,. (30) 

At the corners of the jet cross-section where the ends 

ofadjacent segments of the vortex join together, a jump 

in circulation takes place 

Arj, = r, - rh = r,(6,/6, - 1). (31) 

It is evident that this results in the development of 

the following vortex system. A closed vortex of smaller 
circulation Ib is located in the cross-section, while the 
ends of the vortex of larger circulation I, are split into 
two parts : one part enters the closed vortex, while the 
other, corresponding to the excess of circulation ATj,, 
forms a free end of the vortex entering the zone of 
reduced velocity where the relative motion of fluid 
carries it away along the path of the jet. The end of the 

free vortex should rest in this case on the exit edge of 
the jet nozzle, which provides the fulfillment of the 
condition of vortex conservation. The vortex system 

described, which is shown in Fig. 5, is similar to that 
formed on the finite span wing. 

Freevortices induce additionalvelocities Vai and Vbi 
that influence the process of jet deformation. 

Thus, besides the velocities V, and V, determined on 

the basis of pressure differences, calculation of jet 
deformation over the transitional portion should 
include the induced velocities, i.e. it should be assumed 
that 

V/.x = I/, f Vai, V,, = V, f l/,+ (32) 

The sign depends on the direction of induced velocity. 

In order to determine the mean value of the induced 
velocity (on the given side of the cross-section), for- 
mulae from the finite-span wing theory can be used 

Voi = Arj,/(na, (33) 

and similarly 

I’,i = AI-jb/(rrb). (34) 

Here, the circulation of a free vortex is determined 
from equations (30) and (31) as 

AIj, = (rn% UAo/&,) C(S,,/%) - Il. (35) 

According to the theory of large vortices which gives 

U = 0.25 u,, rob = 0.22 S,, and by virtue of equations 
(33) and (34), we have 

Vai = 0.012 u, 
Ao(6, - 6,) = - I’,i(alb). (36) 

a 
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The relationship between the total velocities of 

straining motion (32) and dimensions of the closed 
vortex field is expressed, according to equations (34) 

and (7), by 

Varb = - V,,u. (37) 

If the difference between the sides of the jet cross- 

section is large (a >> b), the transitional segment on the 
shorter side terminates earlier than the initial segment 
on the longer side (xtrb < xio), but when x,,,, < x one 
should account for a change in the velocity on the jet 
axis (u, < ul) in the beginning by the laws of the plane- 

parallel jet and in the subsequent portion of the jet (X 
> x,), by the laws of the 3-dim. jet. 

As is known for a plane jet [2] 

unIlu, = (x,,b/x)1’2. (38) 

For a rectangular jet at x > x,, one can employ the 

law [7] 

&I %l _=_ 
x ’ 

(39) 
UI 

where the abscissa x, shows the place where the 
hyperbola (39) intersects the line u, = u,. The 
experiments described in ref. [7] show that for a 
tentative calculation of a rectangular turbulent jet one 
may assume that 

x, = 12.5 R,, (40) 

where R, is determined from equation (6). 
The change-over from equation (38) to equation (39) 

is carried out on some intermediate abscissa x,~ z xtro, 
where the both functions intersect and therefore 

2 
X, 

Xtro = _xet = - 
xtrh 

or (41) 

x, = (Xtra Xtrh)l.2. 

The magnitudes of characteristic abscissas from 
equations (40) and (41) are used to determine the axial 
velocity of a rectangular jet. 

The adequacy of equation (40) for the description of 

velocity distribution over the axis of a 3-dim. jet can be 
assessed from the spread of points in Fig. 6, where the 
results of all known experiments for rectangular jets 

FIG. 5. A system of large vortices in a rectangular jet. 

issuing both from smooth nozzles and sharp-edged 
orifices in a plane wall are presented. 

The comparison between the predicted results and 
experimental data for each of the cases shown in Fig. 6 
is given below. 

When determining the difference of pressures by 
equation (4), we use the value of u, obtained from 
equation (38) for the region xtro > x > xtrh and the 
value of u, derived from equation (39) for the region x 

’ -Ytro. 
The area of the vortex field R2. assumed, in accor- 

dance with equation (6), to be constant over the 
starting jet portion (at x < xib) and increasing, 
according to equation (27), in the region x > x,~, also 

grows in the main portion of the jet ; here, both sides of 
the field increase with the jet thickness. According to 
equation (22), over the main portion of the jet (at x > 

?(ia) 

R2 = ab = 0.09 6,6,. (42) 

At the same time, the vortex radius constitutes a 
constant fraction of the jet thickness 

r oo = 0.22 S,; rOh = 0.22 6,. (43) 

Hence, when the expressions (42) and (43) are 
substituted into equation (2), the same magnitude of 

the parameter q is obtained for the adjacent mixing 
layers (q, = qh), but then, according to equation (5), 
the difference of pressures on the adjacent sides of the 
vortex field disappears (Ap = 0). In such a case, at x > 
xia, the jet deformation depends only on the com- 
bination of the inertial rate of deformation V, and the 
induced velocity Vai 

Then 

V,, = V, - voi. (44) 

d2b -2v,2, 
p= b + (R4/b3) 

(45) 

where Vi, is determined from equation (33). 
It should be noted that in the region of the falling 

branch of the curve u,(x), the time interval correspond- 
ing to the computational step Ax, is determined taking 
into account the local value of u,, i.e. according to 

equation (15) as 

At = 2 = 1,43x, 
uo % 

(46) 

The above computational formulae are obtained for 
the case of a jet issuing from a nozzle with a uniform 
velocity field. The initial nonuniformity of the flow can 
be accounted for by substituting the real jet cross- 
section (F, = Ri = a,b,) for an equivalent one (F, = 
Rz = a,b,), in which the velocity is constant and equal 
to the maximum velocity on the axis at the origin of the 
real jet (uI), while the total momentum is assumed to 
be the same. For lack of sufficient information on the 
initial velocity profiles in the reported experimental 
works, these corrections have not been introduced 
here. 
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FIG. 6. Generalized curves ofvelocity attenuation along a rectangularjet axis at n = u,,,‘b, = var. Nozzles: 1, 
n = 1;2,n = 2;3,n = 5;4,n = 10;5, n = 16.7; 6, n = 10. Orifice: 7, n = 5.25; 8, n = 12.4; 9, n = 10. 

In their experiments, Krashennikov et al. [7] and 
Krothapali et al. [ 151 studied the deformation of a jet 

issuing not only from a rectangular nozzle but also 
from a rectangular hole in a thin wall. It has been 
established that the jet discharge conditions influence 
appreciably the subsequentjet deformation. The initial 
compression of the jet coming out of a hole in a thin 
wall persists over a relatively small distance from the 
wall. 

Let the sides of the constricted cross-section of a jet 
be aK and b,. The well-known solution for the problem 
of ideal fluid discharge from a thin wall, given in ref. 
[16] for a plane slot, as well as round and elliptical 
holes, shows that complete constriction of the jet in 
these cases is actually the same and equal to 

/J = R;/R; 2 0.61. (47) 

A change in the jet cross-section R2 = ab over the 
length x is of an asymptotic nature, but the con- 
striction of the cross-section area to the value Ri = 
0.61 Ri for a circle and a slot occurs at about the same 
distance from the wall 

xK = 1.6bo, (48) 

where b, is the slot half-width (or the hole radius). 

A rectangular hole occupies an intermediate pos- 
ition between an infinite slot and a square, while the 
behaviour of the compressed jet in the process of 
transition from one of these two cases to the other is 

similar to that which should be observed in the 
transition from an ellipse with an infinitely elongated 
major axis to a circle. 

On the basis of what has been said above and in 
accordance with equation (47), the following re- 
lationship is adopted for the area of the constricted 
rectangular jet cross-section 

R&JR; = 0.61. (49) 

Then, for lack of a theoretical solution for the 
problem of rectangular jet constriction, it is assumed 
that over the constricted segment the side ratio 
remains constant, i.e. 

Equations (49) and (50) yield the sides of the 
constricted cross-section 

aK = 0.79 a,; b, = 0.79 b,, (51) 

and, by analogy with equation (48), the distance from 
the wall to the constricted cross-section is 

xK = 1.6 b,. (52) 

Here, 2b, is the small side of a rectangular hole. 
Thus, accounting for the constriction of a jet as it 

issues from a slot in a thin wall is reduced to the 

replacement of the slot dimensions a,, b, by aK, b,. 

5. COMPARISON BETWEEN PREDICTION AND 
EXPERIMENT 

When comparing the predicted results with the 
experimental data the following arguments have been 
applied. 

It was shown experimentally by Krashennikov et al. 
that the dimensionless velocity profiles in the jet cross- 
sections along both symmetry axes are expressed 
by the same universal relationship, which is con- 

ventional for turbulent jets 

li=fi)Ul.i.!=j!LI:lu! &n 

where y and z are the coordinates of the instantaneous 
points on the symmetry axes of the cross-section ; y. 5u 
and -70,5U are the same for the points at which the 
velocity is half that on the longitudinal jet axis (u = 
0.5 u,). The use of the Shlichting velocity profile [2] 

u/u, = [l - (y/s)=]2 

shows that the values of yo,5U and z0,5U constitute the 
known fraction of the jet thickness 

4’0 5”/60 = zo.su/6, = 0.415. 

At the same time, it has been established in the 
theory of large vortices that the vortex axis is located at 
a constant relative distance from the maximum ve- 
locity line 

a/6, = b/6, = 0.3. 

(50) Therefore, the conversion of the vortex field dimen- 
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x/2b, 

FIG 7. Comparison between experiment and theory for u/b 
and u, at q,/b, = 12.4 (orifice). Experiment: 1, u,; 2, u/b. 

Calculation : 3, II,,, ; 4, a/b. 
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FIG. 8. Boundaries of a rectangular jet (orifice with a, = 
12.4&J: y,,,,J2b,, r o,05U/2a,. Experiment: 1, 2. Theory : 3. 

sions h. LI into characteristic jet dimensions yO,sU, z0,5ur 
determined experimentally, is carried out for the 
transitional and main portions of the jet as 

=o.sJa = L’~ Jb = 1.38; a/b = qI 5U/~0 sU. 

Figure 7 shows the comparison between the ex- 

perimental data of Krashennikov et al. (points) and 
theoretical results (solid lines) for a jet issuing from a 
rectangular hole (2u, = 62.5 mm, 2b, = 5 mm) in a 
plane wall (orifice). The initial degree of turbulence is 
about 2%, the jet discharge velocity varies in the range 
40-90 m s- ‘, which corresponds to a Reynolds num- 
ber range of 1.5 x 104- 6 x 104. Figure 7 shows the 
current value of the jet cross-section side ratio u/b 
plotted as abscissa and the corresponding dimension- 
less distance (x/2b,) from the jet origin plotted as 
ordinate. The behaviour of the predicted curve a/b = 

f(x/2b,) agrees qualitatively with the position of 
experimental points, but is shifted somewhat to the 
right. This discrepancy can be explained by: (a) the 
presence of the boundary layer over the initial section 
of the jet with the resulting large finite vortices there, 
while it is assumed in calculations that the initial 
thickness of the mixing layer and the initial radius of 

the vortex are equal to zero; (b) the efflux from the 
orifice accompanied by initial constriction of the jet, 
which, in the case of a rectangular hole, can be an 
asymmetric one; the side ratio of this cross-section 
(a,/b,) may differ from that adopted for calculations. 

Figure 8 compares the predicted and experimental 
coordinates y/2b,, and z,/2a, of the lines on which the 
velocity amounts to 0.05 u, for the same jet (a, = 
12.4 b,). 

Figure 9 shows the predicted and experimental 
results for the jet issuing from a smooth rectangular 
nozzle [14] with the dimensions of the outlet cross- 

section 2a, = 50 mm, 2b,, = 3 mm (a,/b, = 16.7) and 

FIG 9. Comparison between experiment and theory for a/b and U, at u0 = 16.7 b, (nozzle). Experiment: 1, 
u,; 2, a/b. Theory : 3, U, ; 4, a/b. 
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FIG. 10. Boundaries of a rectangular jet (nozzle with a, = 
16.7 b,): y&2b,, z~~~,,/~u,. Experiment: 1, 2. Theory: 3. 

having the outlet section of constant area and the 
length of 40 mm. The nozzle had a large constriction 
and the level of turbulence at the jet origin amounted 
to 0.3% (at efflux velocities 60 m s-’ and the Reynolds 

numbers Re = 1.2 x lo4 based on the quantity 2b,). 
In Fig. 10, the predicted and experimental lines of the 

half-velocity (y,,,J2b,; z~,~,,/~u,,) are given for the 

same jet (aa = 16.7 b,). 
Figure 11 compares the experimental data of ref. 

[15] with the calculation carried out by the above 

technique for a rectangular jet, a, = 10 b,, in two 
versions : (a) the efilux from an orifice ; (b) the efflux 
from a channel of the same cross-section (2a, = 
40 mm; 2b, = 4 mm) and of length x,_ = 200 mm (the 
Reynolds number based on the linear dimension 2b, 
= 4 mm is Re = 12 200 for the turbulence level of 5% 
for the orifice and 3% for the channel). 

Figure 12 presents the experimental curves a/b = 
f(x/2b,) compared with the predicted ones for the 
efflux from an orifice with a, = 5.25 b,. 

Figures 7, 9, 11 and 12 show the behaviour of 

velocity U&L, along the jet axis as accepted in 
calculations (dashed line) and obtained in 
experiments. 

6r"r 

FIG. 12. Comparison between experiment and theory for a/b 
and u, at q,/b, = 5.25 (orifice). Experiment: 1, u/b; 2, u,. 

Theory: 3, u/b; 4, experiment, 

6. CONCLUDING REMARKS 

Thus, a hypothesis is advanced that in a mixing layer 
of a rectangular jet there exist discrete large vortices 

that move with an averaged flow velocity. The fluctuat- 
ing superimposed flow moving past them creates a 
non-uniform pressure field which causes deformation 
of the jet cross-section. The calculation method de- 
veloped agrees satisfactorily with the experiments. 
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SUR LA DEFORMATION DE LA SECTION DROITE D’UN JET TURBULENT 
RECTANGULAIRE 

R&m&On exphque la raison de la dkformation d’un jet turbulent rectangulaire qui apparait expkimenta- 

lement avec une croissance rapide (dans la direction du jet) du plus petit cbtd du jet et une reduction du plus 
grand c6tL Ces changements sur les c&s prennent place B plusieurs distances en aval de l’origine du jet. La 
diformation est due ii un champ de pression spkifique induit par de larges tourbillons qui apparaissent dans 

la zone de mtlange du jet. 
Une mkthode de calcul de la deformation du jet est dkveloppte g partir de l’information de l’auteur sur le 

champ de pression produit par les grands tourbillons. Les risultats sent compares avec donntes 

exp&imentales en provenance d’autres sources. La theorie suggtirte s’applique aux tcoulements de jets dans 
1es foyers de chaudidre, les stkhoirs, les chambres de combusion des rkacteurs, les turbines B gaz terrestres des 

centrales Clectriques et les riacteurs chimiques, etc. 

DEFORMATION EINES TURBULENTEN STRAHLES MIT RECHTECKQUERSCHNITT 

Zusammenfassung-Dieser Aufsatz erkldrt den Grund fiir die experimentell zu beobachtende Deformation 
eines turbulenten Strahls von rechteckigem Querschnitt, die sich in einem schnellen Anwachsen (in 
Strahlrichtung) der kiirzeren Rechteckseite und einer Verkleinerung der gr68eren Seite luRert. SchlieRlich 
vertauschen die beiden Seiten in einer gewissen Entfernung vom Strahlanfang ihre PI&e. Es zeigt sich, dal3 
die Strahl-Deformation durch ein spezifisches Druckfeld hervorgerufen wird, das durch grol3e Wirbel 
induziert ist, die aus der Mischzone des Strahls stammen. Zur Berechnung der Strahl-Deformation wird ein 
Verfahren entwickelt, das van Informationen des Autors iiber wirbelinduzierte Druckfelder Gebrauch 
macht. Die Ergebnisse werden mit Versuchsdaten aus anderen Quellen verglichen. Die vorgeschlagene 
Theorie 18I3t sich auf StrahlstrBmungen anwenden, wie sie in Kesseln, Trocknem, Brennkammem von Strahl- 

Triebwerken und van stationgren Gasturbinen, chemischen Reaktoren usw. vorkommen. 

0 ,IJE@OPMAuMM HOnEPEqHOTO CEYEHMJI nPJlMOYl-OJIbHOfi 
TYP6YJIEHTHOti CTPYM 

A~~oraunn-B pa6oTe o6aacHneTcr npswHa Ha6nIonamuIekn B OnbITax ne+opMawiki npRMoyronbHoti 

Typ6yJIeHTHOti Crpya, BbIpa~aIOIIJekI B 6bICTpOM POCTe (no NHHe Crpyki) KOpOTKOii CTOpOHbI 

nonepeworo ceqeHw3 ki yMeHburenrzkI ~UHH~A ero cTopoHbI. B pe3ynbTa-re Tarok nepecTpoRKIi Ha 

HeKOTOpOM paCCTOSIHltI4 OT Ha’lafla CTpyrC KOpOTKaS U aJlHHHaR CTOpOHbl nOnepe’IHOr0 CeqeHHIl CTpyH 

MeHRIOTCR MeCTaMI1. nOKa3bIBaeTCR, ‘IT0 LIe@OpMaUWi CTpyH BbISbIBaeTCR CneI,H$WIeCKHM nO.“eM 

fiaa,,eH&,fl, KOTOpOe UHnyIWpyeTCR KpynHbIMH BIIXpRMH, BOJHAKaIOIUUMA B 30He CMeIIIeHllR CTpyH. 

Paspa6oraH MeTOA paNeTa ne~OpMallrte CTpyII, ecnonbsytomaii ceenemia 0 none nasnemin, 
c03naaaeMoM KpynHblMa ~kixpst.48, 3asMcTayeMbIe ~3 pa6o-r as-ropa. PesynbraTbI paweTa conocTa- 
BJIRIOTCR C 3KCnepHMcHTaJIbHblMf aaHHbIMH npyrHX aBTOpOB. npe&TaraeMaH TeOpWI npHJOxHMa K 

paCVeTy CTpyfiHblX TeqeHHfi B TOnKaX KOTeJIbHbIX yCTpOkTB, CyIIIHJIKaX, KaMepaX CrOpaHWI peaKTHBHbIX 

DBHraTeJIeti H CTanllOHapHbIX raSOTyp6AHHbIX yCTaHOBOK WIeKTpOCTaHI&, XHMH4eCKMX peaKTOpaX H ilp. 


